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A Sequential Injection Analysis (SIA) system and an 8-potentiometric all-solid-state sensor array were
coupled in a simple and automated electronic tongue device. The potentiometric sensors used were
planar microfabricated structures with standard PVC membranes deposited onto a gold contact. The SIA
system permitted the automated operation and generation of the calibration data, needed to build an
Artificial Neural Network model, thanks to the precise dosing and mixing of volumes of stock solutions.
The resolution of a four-ion mixture, i.e. ammonium, sodium, nitrate and chloride was the study case
used for characterization of the system. Two different variants for signal acquisition, steady-state and
equential Injection Analysis
utomated electronic tongue
rtificial Neural Network
otentiometric microelectrodes
atrix effect

transient recording, were arranged and compared. The dynamic treatment is shown to offer improved
performance thanks to the benefits of the kinetic resolution. For this, it first extracts meaningful data
from a FFT transform of each sensor’s transient, which is then fed to an ANN model for estimation of each
concentration in the four-ion mixture. While in a standard laboratory situation there was no difference
between the two approaches, the dynamic treatment allowed the correction of a matrix effect in the case

lled
study, where an uncontro

. Introduction

A recent proposal in chemical sensing is the electronic tongue
ET) concept, a topic receiving special attention and which is
ystematically contributed by several laboratories in different
ountries. This novel analytical concept involves the use of a sensor
rray, normally with cross-response features among the different
ensors used, plus a chemometric data processing tool to extract the
omplex response patterns [1]. This innovative intelligent system,
ioinspired in nature’s animal senses, allows a fast determina-
ion or identification of several compounds through a single stage
hat uses the cross-sensitivity of sensors plus an advanced data
rocessing tool to interpret the signals’ chemical meaning [1].
here are ETs described which employ sensors with potentiometric,
oltammetric or impedimetric transduction, as the main variants.
on-selective electrodes (ISEs) are widely used to form arrays for
Ts [2,3]. For these sensors there are many formulations of mem-

ranes of varied selectivity allowing its use in several applications
4,5].

The Sequential Injection Analysis (SIA) technique has been
roposed recently to add versatility and facilitate automation of

∗ Corresponding author. Tel.: +34 93 5811017; fax: +34 93 5812379.
E-mail address: manel.delvalle@uab.es (M. del Valle).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.05.061
saline effect could be counterbalanced.
© 2010 Elsevier B.V. All rights reserved.

calibration tasks when employing electronic tongue (ET) systems
[6]. Over the last decade, more evolved techniques as multicom-
mutated flow injection, multisyringe flow injection and sequential
injection have increased the viability and capability of flow chem-
ical analysis [7,8]. Especially, advanced treatment of samples is
facilitated thanks to the versatility and high reproducibility offered
by SIA systems. Recalling that one problem associated with the
developing of ET is the large amount of calibration standards
needed to generate an appropriate response model; it is there-
fore obvious that automated flow systems are highly valuable to
generate the information necessary [9,10].

When ETs employ arrays of potentiometric sensors, the inter-
ference problem between the primary ions considered and closely
related ionic interferences – of a very complex non-linear nature
when the number of species increases– may then be tackled with
the cross-response features very like as in the electronic tongue
concept. Different chemometric treatments can then be employed,
such as Partial Least Squares (PLS) and Artificial Neural Networks
(ANNs) [11–13]. In our experience, we are in favour of the use of
Artificial Neural Networks (ANNs), more suited to the high non-

linearities present [9,14].

However, regardless of the method selected, a correct iden-
tification of signal characteristics is essential in order to build
appropriate interpretation models. In this way, standard procedure
is the use of SIA or FIA peak heights or also the steady-state poten-
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ials recorded after the injection [3]. But when the sensors are used
ithin a FIA or a SIA system, a richer signal can be acquired, the tran-

ient response to a step or pulse profile of sample arriving to the
ensor array. This richer signal, which entails the dynamic nature
f the sensor’s response, can be of high information content, either
f primary ion activity or of possible interferences [15–17], which
an be better discriminated thanks to the kinetic resolution added.

Although the potentiometric measurement process is relatively
imple, recordings obtained according to the transient principle
resent increased complexity. Therefore, the choice of suitable pre-
rocessing tools becomes critical in order to reduce data without

oss of information. The transient can be subsequently reduced to
ignificant features, for example through a Principal Component
nalysis (PCA) [18,19], Legendre’s polynomials [20,21], Fast Fourier
ransform (FFT) [22] or Wavelet decomposition [23], while next,
he reduced information may be taken as departure point for the
NN model.

The approach employing ETs and SIA has been successfully
ested for alkaline ions mixtures [9], alkaline-earth [24], and also
nions mixtures [21]. With use of dynamic treatment of signals,
t has been used to resolve three [16] and four-cation mixtures
15]. In this communication, we present the SIA determination
f both anions (nitrate, chloride) and cations (ammonium, potas-
ium), employing the dynamic signals from a sensor array. The
-sensor array was equipped with planar microfabricated struc-
ures with standard PVC membranes deposited onto a gold contact
25]. The chemometric treatment proposed to process the time
ransient firstly extracts meaningful data from a FFT transform of
ach sensor’s recording, and feeds then an ANN model for quanti-
ative estimation of each concentration of the quaternary mixture.
hanks to the automation capabilities of the used SIA system, all
reparation of the ca. 100 standards used for the building of the
esponse model, could be done easily and without special effort,
emonstrating the versatility of the approach.

. Experimental

.1. Reagents and solutions

All solutions were prepared with doubly distilled water and the
eagents used were of analytical grade. The measurements were
erformed using lithium acetate 0.05 M (Applichem, Germany) as
background salt in the carrier solution. Potassium acetate (Baker,
olland), ammonium acetate (Panreac, Spain), lithium nitrate
Fluka, Switzerland) and lithium chloride (Panreac, Spain) solu-
ions were used as calibration species by dissolving the appropriate
mount of salts in the above described background solution. It may
e noticed that the counterion for each salt species considered was
cetate or lithium to avoid any distortion in the measurements.

able 1
ormulation of the ISEs forming the sensor array and initial characterization of their resp

Sensor PVC Plasticizer Ionophor

K+ 33% Dioctylsebacate (65%) Valinomy

NH4
+ 33% Dioctylsebacate (66%) Nonactin

NO3
− 33% Nitrophenyloctylether (65%) Tetradecy

Cl− 2nd kind, Ag/AgCl electrode

a With the addition of x = (0.5, molar ratio towards ionophore) potassium tetrakis[3,5-b
b With the addition of x = (0.08 molar ratio towards ionophore) potassium tetrakis[3,5-
c Uncertainty values correspond to standard deviation of 6 repeated calibration experi
d First-order time constants, fitted by non-linear regression to exponential rise (or deca
82 (2010) 931–938

2.2. ISE array

The array used in the proposed ET was formed by eight ISEs
(two sets of: potassium-, ammonium-, nitrate- and chloride-
sensitive microelectrodes) with different cross-sensitivity features.
The transducers, i.e. back-side contact Au microelectrodes were
constructed employing a double side PCB layer as a base material.
Details on the technology and procedures can be found in previous
papers [25,26].

Different membrane cocktails were prepared, in order to be
deposited on the surface of the back-side contact Au planar micro-
electrodes. Prior to membrane deposition, sensor’s surfaces were
cleaned with distilled water and methanol. After the membrane sol-
vent evaporation, the sensors were mounted in flow-through cells.
Planar Ag/AgCl microelectrodes, developed in silicon technology in
the Institute of Electron Technology (Warsaw), have been applied
as chloride-sensitive sensors. All the electrodes were conditioned 3
days before its first use in a 0.01 M solution of their primary ion. The
detailed formulation of the membranes is summarized in Table 1.
Provider of all the membrane components was Fluka (Switzerland).

2.3. Instrumentation

The developed SIA system had two clearly different parts: the
first part was the fluid system formed by an automatic microbu-
rette, one holding coil, an 8-way Hamilton MVP multiport valve
(Hamilton, Switzerland) and a 7-mL Perspex mixing cell with a
magnetic stirrer. The multiport valve is connected to the burette
with holding coil placed in between. The burette is fed through a
carrier solution reservoir. By the time the common port may access
any of the other ports which led to sample, standard stock solu-
tions, mixing chamber or sensor array by an electrical rotation of
the valve. All the elements were connected together using low-
pressure liquid chromatography connectors. The second part was
the measurement system, which is formed by the sensor array,
the reference electrode (miniaturised silver/silver chloride elec-
trode with a double junction) and an 8-channel signal conditioning
circuit connected to the National Instruments Multifunction DAQ
analogue inputs (Model NI6221, USA). The whole system was con-
trolled by a PC using a virtual instrument developed in Labview [27].

2.4. Procedures

A first study stage consisted in the sensor characterization with

single ion calibration measurements. The calibration consisted in
recording the ISE potentials for different standard solutions of the
primary ion (containing the background 0.05 M lithium acetate)
prepared automatically by the SIA system by direct dosing or
sequentially diluting a stock solution. The prepared mixture was

onse towards single ions.

e Sensitivity (mV/dec)c � (s)d

cin (2%)a K+ 53 ± 2 0.905
NH4

+ 46 ± 7 0.976

(1%)b NH4
+ 53 ± 1 0.883

K+ 50 ± 1 0.915

l ammonium bromide (2%) NO3
− −45 ± 1 0.961

Cl− −19 ± 2 0.998

Cl− −56 ± 1 0.881
NO3

− – –

is(trifluoromethyl)phenyl]borate.
bis(trifluoromethyl)phenyl]borate.
ments.
y for anions).
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Table 2
Summary of selectivity coefficients obtained from the selectivity study with two
degrees of freedom.

Sensor and primary ion Interfering ion log Kpot
x,y

a log Kpot
x,y

b

NH4
+ K+ −0.82 ± 0.04 −0.8c

K+ NH4
+ −1.8 ± 0.2 −1.9d

NO3
− Cl− −2.08 ± 0.2 −2.6e

Cl− NO3
− – –

a Obtained values (two degrees of freedom) with flow conditions and
A. Mimendia et al. / T

ubsequently presented to the sensors with a step injection of sam-
le. This stage was extended to binary mixtures of ions in order to
haracterize sensor’s interference behaviour and determine their
otentiometric selectivity coefficients; also, arbitrary quaternary
ixtures could be prepared in a complete automated procedure

or the ET training and operation [9].

.4.1. Data generation
Building of the response model is required before the appli-

ation. For this purpose, a set of mixtures with different
oncentrations of the four considered ions were prepared auto-
atically with the SIA system. Prepared solutions also had the

redefined background, lithium acetate 0.05 M, and were obtained
hrough additions of microvolumes of stock solutions using the

ixing cell.
Two different experiments were carried out in order to evalu-

te ET capabilities. The first experiment involved the simultaneous
etermination of four ions (K+, NH4

+, NO3
− and Cl−). The sec-

nd experiment corresponds to the determination of K+, NH4
+

nd NO3
− in the presence of a variable concentration of NaCl

s a perturbation event. For both experiments all the solutions
ere randomly generated considering the following concentra-

ion ranges: 0.4–10 mM for potassium, 0.1–4 mM for ammonium,
.1–4 mM for nitrate, 0.3–10 mM for chloride in the first case and
.01–0.2 M for sodium chloride in the second.

.4.2. Multivariate modelling
ANNs were used in order to model the combined sensors’

esponse obtained from standard solutions which contained the
ifferent ions studied. The corresponding programs and calcula-
ions were performed in MATLAB 7.1 (Mathworks, USA) using its
eural Network Toolbox Version 4.0.6 and Signal Processing Tool-
ox Version 6.4.

Conventionally, experimental SIA transient measurements con-
ained hundreds of records and cannot be processed directly by an
NN due to its high data dimension. To solve this problem, ANN
odels are traditionally fed with steady-state signals, in this case

t is common to use the mean values of measures from the last sec-
nds of the sensors’ dynamic records or simply the peak height.
n alternative approach is to take advantage of the whole dynamic
ecord; in this case the proposed pretreatment consists in calcu-
ating firstly the Fast Fourier Transform (FFT) coefficients of each
ignal and then feed the ANN model with some of the low frequency
omponents [16].

In all cases, ANN models should be optimized by an iterative
rocess in order to generate the best response model. To evaluate
he model’s performance, standard error of training and prediction
ere used. On the one hand, some combinations employing lin-

ar (purelin) and non-linear (logsig and tansig) transfer functions
s well as different number of neurons (between 3 and 10) in the
idden layer were tested in order to assure the best performance.
n the other hand, training algorithm Bayesian Regularization (BR),
nd training parameters as learning rate (˛ = 0.1) and the momen-
um (ˇ = 0.4) were set based on the previous group experience [28].
he appropriate number of ANN inputs, were chosen in the case
f steady-state procedure using the mean of the last 15 s sensor’s
ecording. In relation with ANN models fed by FFT coefficients, the
se of different number (between 2 and 8) was tested in order to
chieve optimal results.

. Results and discussion
First of all, the sensors were characterized in their response
owards single ion solutions and binary mixtures. Once the full
haracterization of the sensors had been made, the next step was
o construct an ET with the purpose of determining simultaneously
Nikolskii–Eisenmann fit.
b Obtained values with static conditions and fixed interference method.
c Ref. [29].
d Ref. [30].
e Ref. [21].

potassium, sodium, nitrate and chloride ions. In the same way, an
additional application was performed, in order to determine potas-
sium, sodium and nitrate ions simultaneously in the presence of
uncontrolled saline medium.

3.1. Characterization of ISE sensors

In the characterization towards the primary ion, and tak-
ing advantage of the independent response between anions and
cations, ammonium nitrate and potassium chloride were used as
standard solutions to obtain two calibrations per run (the cation
and the anion). In this sense, six calibration replicates were done
with each standard to estimate repeatability of measurements.
The sensitivities calculated from calibration curves of each sen-
sor towards their primary ion are provided in Table 1. The values
are not perfectly Nernstian, but we must consider they correspond
to flow conditions. In the table were included also the first-order
time constants (�) of the sensors’ dynamics of response. These were
determined fitting the responses to a 3 parameters exponential rise
to a maximum in the case of cations, and a 3 parameters exponential
decay for anions. As it can be observed, time constants for primary
ions are always smaller than their equivalent to the interfering ion,
which may be used for better discriminating them.

Next, the sensor responses were characterized for binary mix-
tures using the versatility shown by the automated SIA system.
In there, both the concentrations of the primary ion and the
interfering ion were allowed to vary simultaneously, in contrast
to the fixed interference method, where only one ion is varied.
This characterization represents a very useful interference study
because the values of the potentiometric selectivity coefficients in
the Nikolskii–Eisenmann equation (Kpot

x,y ), are obtained with two
degrees of freedom. The logarithms of the corresponding potentio-
metric selectivity coefficients are reported in Table 2, together with
their reference value from the literature, normally calculated from
fixed interference method. Fig. 1A shows the obtained response
surface for the ammonium selective electrode (steady-state poten-
tials), where ammonium is considered to be the primary ion and
potassium the interfering one. The figure illustrates the experimen-
tal points prepared automatically with the SIA system, as well as
the three-dimensional response surface which is obtained from the
Nikolskii–Eisenmann equation fitted with Levenberg–Marquardt
algorithm, as available in Sigmaplot 8.0 (SPSS Inc., Chicago, IL). It
can be clearly seen how, with low concentrations of the primary
ion, the curvature gets steeper as the concentration of the inter-
ferent increases. The same behaviour was observed for potassium
sensors, but in this case the primary ion was potassium and ammo-
nium the interfering ion. With regard to anion interferences, they

just affected the nitrate sensors (Fig. 1B), for this also the curvature
gets steeper when the concentration of chloride increases. Again,
this very special study was feasible thanks to the versatility of the
SIA system, which permitted the effortless automated preparation
of 42 binary mixtures for each combination of cations or anions.
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of the obtained results, reported in Table 5, several observations
ig. 1. Response surface plots corresponding to selectivity experiments of two of
he sensors employed in the array, showing their cross-response features: (A) NH4

+

ensor and (B) NO3
− sensor.

.2. First study case: simultaneous determination of potassium,
mmonium, nitrate and chloride

The SIA electronic tongue approach was attempted for the deter-
ination of the four considered ions. The sensor array used was

omposed by NH4
+-ISE, K+-ISE, NO3

−-ISE and an Ag/AgCl second
ind electrode, all duplicated. The automated SIA system permit-
ed the effortless generation of the samples needed; a total amount
f 100 samples were measured in order to generate the response
odel. These samples were divided in two sets, 70 samples for the

raining step and 30 for the test set. A total of 600 potential values
er sample were measured for each ISE (60 s of transient record-

ng and 0.1 s between readings). In order to build different models
nd to compare their performance, both steady-state and dynamic

ignal pretreatments were used.

After checking ca. 20 different ANN configurations following the
ptimization procedure described in Section 2.4.2, the best results
ere obtained with a model generated by an ANN with an 8-4-4
82 (2010) 931–938

architecture for steady-state signals and 32-4-4 for ANN-FFT (four
coefficients per sensor). Both models were trained employing the
BR algorithm, and used a logsig and purelin transfer functions for
the hidden and output layer, respectively, as the optimal arrange-
ment. Comparison graphs of predicted vs. expected concentrations
for the four species under study were built to check the predic-
tion ability of the ANN. For the selection of the best configuration,
we considered the Root Mean Squared Error (RMSE) of the fit and
the slope, intercept and correlation coefficient of the comparison
graphs (ideal values close to 0, 1, 0, and 1, respectively) (Fig. 2).

Concerning the obtained results, reported in Table 3, the evalua-
tion parameters extracted from the comparison graph of the test set
(Fig. 2) are close to the ideal values for all ions under study. More-
over these quite ideal performances were obtained independently
of the two proposed pretreatments.

Furthermore, 10 additional synthetic samples were measured
following the same procedure as before. In order to evaluate
the benefits related to the ANN processing these samples were
processed also employing a linear Nernstian model with direct
interpolation of steady-state potential. A Student’s paired sam-
ples t-test was performed between both series of data, while the
obtained results are reported in Table 4. From these t-test results
it could be extracted that the ANN data treatment is required to
quantify correctly all the ions, except for chloride for which the
Nernstian linear model is enough. This is a predictable observation,
as the 2nd kind Ag/AgCl electrode does not present any interference
by the cations or anions tested. When comparing steady-state and
FFT pretreatments for the other ions, no differences could be dis-
cerned between the obtained results, but as a conclusion, both ANN
treatments solved successfully the interference problem of cations
as much as anions.

3.3. Second study case: simultaneous determination of
potassium, ammonium and nitrate in the presence of uncontrolled
saline medium

Once the ET capabilities were checked achieving the simul-
taneous determination of the quaternary ion mixture, a second
experiment was performed including a variable perturbation of
high arbitrary concentrations (up to 0.2 M) of NaCl in the training
(and external test) samples. The goal is to check if the proposed sys-
tem could overcome this situation of strong interference of sodium
and chloride, which is common in field analysis in waters from
estuaries, deltas, wells close to the sea, etc.

In order to generate the response model, 80 sample standards
were used, a smaller dataset, given it only modelled a trinary mix-
ture. Later these samples were divided in two subsets; 50 were
assigned to the training step and 30 for the external test set. The
subsequent pretreatment consisted in extracting the FFT coeffi-
cients and the steady-state values, as in the first case, in order to
feed the ANN with them and generate the response model.

As in the previous case, at least 20 different architectures were
programmed in order to optimize the best ANN configuration. Final
ANN architectures had the following structure: an 8-3-3 architec-
ture for steady-state case and 40-3-3 for ANN-FFT (five Fourier coef-
ficients per sensor). Both models were trained employing the BR
algorithm, and showed better results when using a logsig and pure-
lin transfer functions for the hidden and output layer, respectively.

Comparison graphs of predicted vs. expected concentrations for
the three species under study were again built to check the predic-
tion ability of the ANN (Fig. 3). Related to the evaluation parameters
can be made. This time, distinct behaviours could be appreciated
depending on the choice of data pretreatment. On the one hand,
the comparison graphs for the external test set and synthetic sam-
ples employing the dynamic FFT approach are close to the ideal
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Fig. 2. Comparison of obtained vs. expected concentrations for samples in the external test subset: potassium, ammonium, nitrate and chloride ions. Graphs on the left
correspond to steady-state signal, and on the right to FFT preprocessing.
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Table 3
Results of the regression lines obtained in comparison between obtained vs. expected concentrations, for the determination of the four species and considering the steady-state
approach and the FFT pretreatment (uncertainty intervals calculated at the 95% confidence level).

Ion Steady-state signal FFT pretreatment

Correlation Slope Intercept (mM) RMSE (mM) Correlation Slope Intercept (mM) RMSE (mM)

External test subset
K+ 0.957 0.99 ± 0.1 −0.2 ± 0.5 0.7 0.951 1.05 ± 0.1 −0.2 ± 0.6 0.8
NH4

+ 0.99 1.02 ± 0.06 0 ± 0.1 0.2 0.987 1.02 ± 0.06 −0.1 ± 0.1 0.2
NO3

− 0.994 1.04 ± 0.04 −0.6 ± 0.1 0.1 0.988 1.01 ± 0.06 0 ± 0.1 0.1
Cl− 0.999 1.00 ± 0.01 −0.07 ± 0.09 0.1 0.997 0.98 ± 0.03 0 ± 0.2 0.1

Synthetic samples
K+ 0.993 1.1 ± 0.1 0 ± 0.5 0.2 0.935 0.99 ± 0.3 0.3 ± 1 0.5
NH4

+ 0.987 1.1 ± 0.1 −0.1 ± 0.1 0.08 0.982 1.1 ± 0.2 −0.1 ± 0.2 0.1
NO3

− 0.999 0.96 ± 0.03 0.1 ± 0.2 0.07 0.993 1.00 ± 0.1 0 ± 0.2 0.08
Cl− 0.996 0.97 ± 0.07 0.1 ± 0.2 0.06 0.998 0.96 ± 0.05 0.1 ± 0.2 0.1

Fig. 3. Comparison of obtained vs. expected concentrations for samples in the external test subset (study case with uncontrolled saline background): potassium, ammonium
and nitrate ions. Graphs on the left correspond to steady-state signal, and on the right to FFT preprocessing.
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Table 4
Comparison series of theoretical, classical Nernst model, proposed FFT-ANN and ANN-ST (steady-state signal) model according to Student’s paired samples t-test.

Analyte Expected vs. Nernst Nernst vs. ANN-FFT Expected vs. ANN-FFTa ANN-FFT vs. ANN-ST

NH4
+ 2.987 2.973 0.046 1.110

K+ 2.42 2.444 1.134 0.116
NO3

− 3.206 3.208 0.091 0.390
Cl− 0.136 0.126 0.324 0.690

a Critical tabulated t value (95% confidence level, 9 degrees of freedom), t* = 2.26.

Table 5
Results of the regression lines obtained in comparison between obtained vs. expected concentrations, for the determination of three species in saline background and
considering the steady-state approach and the FFT pretreatment (uncertainty intervals calculated at the 95% confidence level).

Ion Steady-state signal FFT pretreatment

Correlation Slope Intercept (mM) RMSE (mM) Correlation Slope Intercept (mM) RMSE (mM)

External test subset
K+ 0.959 0.93 ± 0.10 0.3 ± 0.5 0.7 0.975 0.93 ± 0.08 0.2 ± 0.2 0.5
NH4

+ 0.912 0.73 ± 0.10 0.4 ± 0.3 0.4 0.961 0.91 ± 0.10 0.2 ± 0.2 0.3
NO3

− 0.869 0.89 ± 0.20 0.2 ± 0.3 0.5 0.970 0.95 ± 0.09 0.1 ± 0.2 0.2

v
c
c
a
r
o
c
a

f
b

T
R
N

Synthetic samples
K+ 0.96 0.97 ± 0.23 0 ± 1 0.5
NH4

+ 0.865 0.70 ± 0.3 0.3 ± 0.9 0.2
NO3

− 0.943 0.85 ± 0.20 0 ± 0.7 0.2

alues for all the species under study. In this sense, the correlation
oefficients, slopes, intercepts and also RMSE indicate that this pro-
edure was able to avoid the distortion in the determination of the
nalytes even in the presence of uncontrolled saline media. These
esults clearly show the correction of a matrix effect through the use
f a multi-way data, a feature normally faced with spectroscopic or

hromatographic techniques, and firstly demonstrated here with
n electronic tongue system.

Considering the steady-state pretreatment, it achieved satis-
actory results only towards potassium determination, probably
ecause the selectivity of the used sensor is high enough to min-

able 6
elative errors obtained for the predicted concentrations of 10 samples applying the tw
ernstian interpolation for the respective sensor.

Sample (mM) Rel.

K+ 5.18 9.6
4.5 10.2
6.14 3.8
4.85 1.1
8.3 13.0
3.25 28.9
6.8 6.4
1.76 47.2

NH4
+ 2.87 5.9

0.715 21.7
2.54 14.4
3.83 8.8
1.03 27.7
2.02 7.3
0.49 5.4
0.95 2.0

NO3
− 1.43 4.8

0.225 19.8
1.08 2.7
1.38 5.9
1.43 3.1
2.49 1.3
0.71 29.3
1.29 20.4

Average relative error (%) K+ 15.0
NH4

+ 11.7
NO3

− 10.9

a Fast Fourier Transform.
b Steady-state.
c Direct interpolation.
0.957 0.98 ± 0.2 0 ± 1 0.4
0.983 1.1 ± 0.2 0 ± 0.3 0.1
0.987 0.94 ± 0.20 0.1 ± 0.4 0.1

imize the saline effect. Concerning ammonium and nitrate ions,
the model fitting degrees, the correlation coefficients of the com-
parison graphs as well as their slopes were clearly worse when
compared with the FFT approach. From the inspection of Fig. 3, the
higher scatter of comparison values for the steady-state approach
is clearly seen, demonstrating a worse overall performance than

with the dynamic data treatment.

In order to compare the different pretreatments in more realistic
way, from 8 samples the relative errors of the predicted concen-
trations were calculated. Table 6 summarizes this information. In
it, it may be observed for each ion (specially for ammonium and

o pretreatments (Fast Fourier Transform, Steady-State) and compared to a direct

error FFTa Rel. error SSb Rel. error DIc

20.7 69.2
14.5 38.6

6.5 68.3
5.3 73.9
2.3 81.1

43.7 58.8
5.1 92.1

40.8 193.6

7.5 132.2
4.6 1037.8

34.0 55.0
37.9 103.4
55.0 203.7
28.4 825.5

106.5 318.0
37.1 2941.9

1.5 436.7
21.7 7339.2
35.7 1731.8
35.7 1262.9
50.5 873.0
13.7 606.7

103.6 2791.0
25.1 1564.1

17.4 84.4
38.9 702.2
35.9 2075.7
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itrate) that the FFT achieves more accurate predictions than the
teady-state treatment. On the one hand, it is possible to confirm
he importance of using the kinetic resolution of potentiometric
ignals; on the other hand, the requirement of applying the Artificial
eural Network to process the potentiometric data is irrefutable,
s in a situation without controlling the interfering species, perfor-
ance with direct interpolation in the Nernstian equations fitted

or each sensor reaches uncontrolled errors.

. Conclusions

A simple, automated analytical device – potentiometric elec-
ronic tongue – based on all-solid-state sensor array, SIA system
nd multidimensional sensor signal analysis has been developed.
y coupling the ET with the SIA system the required experimen-
al effort diminished and enabled to perform the large amount
f measurements needed; additionally, the richer dynamic signal
ould be recorded with high reproducibility. Quantitative deter-
ination of a quaternary mixture was performed to evaluate the

eliability of the system in normal conditions and with the saline
ackground.

In the first study case potassium, ammonium, nitrate and
hloride ions were determined obtaining accurate predictions inde-
endently of the pretreatment chosen, steady-state or dynamic. In
his sense, the steady-state procedure, which is the simpler, seems
o be the best option. In contrast, under a perturbation situation
s it is the presence of an uncontrolled saline matrix, the ANN-
FT processing offers more accurate predictions than just using the
teady-state values. These results demonstrate that the dynamic
haracteristics of the ISEs furnish extra information about the sam-
le composition, helping to better discriminate components in the
ample, and counterbalancing a matrix effect. In this way, this is
he first time an electronic tongue system demonstrates the so-
alled “second-order advantage” [31], i.e. it succeeds in predicting
he concentrations of the analytes of interest in the presence of a
ighly interfering sample matrix.
cknowledgements

This work was supported by European Community project FP6-
ST No. 034472, “WARMER: Water risk management in Europe”,

[

[
[

[

82 (2010) 931–938

Spanish Ministry of Science and Innovation, project TEC2007-
68012-C03-02/MIC and the Mexican National Council of Science
and Technology CONACYT.

References

[1] Y.G. Vlasov, A.V. Legin, A.M. Rudnitskaya, A. D’Amico, C. Di Natale, Sens. Actu-
ators B 65 (2000) 235.

[2] J. Gallardo, S. Alegret, M. del Valle, Talanta 66 (2005) 1303.
[3] J. Gallardo, S. Alegret, M. del Valle, Sens. Actuators B 101 (2004) 72.
[4] Y. Umezawa, K. Umezawa, P. Buhlmann, N. Hamada, H. Aoki, J. Nakanishi, M.

Sato, K.P. Xiao, Y. Nishimura, Pure Appl. Chem. 74 (2002) 923.
[5] Y. Umezawa, P. Buhlmann, K. Umezawa, K. Tohda, S. Amemiya, Pure Appl. Chem.

72 (2000) 1851.
[6] A. Gutés, F. Céspedes, M. del Valle, Anal. Chim. Acta 600 (2007) 90.
[7] R. Pérez-Olmos, J.C. Soto, N. Zárate, A.N. Araújo, M.C.B.S.M. Montenegro, Anal.

Chim. Acta 554 (2005) 1.
[8] R.B.R. Mesquita, A.O.S.S. Rangel, Anal. Chim. Acta 648 (2009) 7.
[9] M. Cortina, A. Gutés, S. Alegret, M. del Valle, Talanta 66 (2005) 1197.
10] L.M.I. Codinachs, A. Baldi, A. Merlos, N. Abramova, A. Ipatov, C. Jimenez-

Jorquera, A. Bratov, IEEE Sens. J. 8 (2008) 608.
11] V. Pravdova, M. Pravda, G.G. Guilbault, Anal. Lett. 35 (2002) 2389.
12] J. Mortensen, A. Legin, A. Ipatov, A. Rudnitskaya, Y. Vlasov, K. Hjuler, Anal. Chim.

Acta 403 (2000) 273.
13] J. Saurina, S. Hernández-Cassou, Anal. Chim. Acta 438 (2001) 335.
14] M. Gutiérrez, S. Alegret, M. del Valle, Biosens. Bioelectron. 23 (2008) 795.
15] D. Calvo, A. Durán, M. del Valle, Sens. Actuators B 131 (2008) 77.
16] D. Calvo, A. Durán, M. del Valle, Anal. Chim. Acta 600 (2007) 97.
17] A.V. Legin, A.M. Rudnitskaya, K.A. Legin, A.V. Ipatov, Y.G. Vlasov, Russ. J. Appl.

Chem. 78 (2005) 89.
18] P. Ciosek, T. Sobanski, E. Augustyniak, W. Wroblewski, Meas. Sci. Technol. 17

(2006) 6.
19] R.M. de Carvalho, C. Mello, L.T. Kubota, Anal. Chim. Acta 420 (2000) 109.
20] J. Simons, M. Bos, W.E. Van der Linden, Analyst 120 (1995) 1009.
21] M. Cortina, A. Duran, S. Alegret, M. del Valle, Anal. Bioanal. Chem. 385 (2006)

1186.
22] P.J. Gemperline, Chemometr. Intell. Lab. Syst. 39 (1997) 29.
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